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1 Introduction

Humans rely on imitation as a fundamental learning
mechanism throughout their development [1]. With the ad-
vancement of robotics and artificial intelligence, enabling
robots to acquire imitation learning capabilities similar to
those of humans has become a major challenge in the field
of intelligent robotics [2].

Traditional control approaches for robots, which are
typically based on precise mathematical models and pre-
determined motion planning strategies, have historically
been successful in achieving efficient locomotion for
quadrupedal, bipedal, and humanoid robots [3]. However,
these methods often depend on highly accurate environmen-
tal models, which poses considerable challenges in terms of
robustness and generalization.

Imitation learning offers robots a more natural and flexible
pathway for acquiring skills. By imitating human demon-
strations, robots can learn complex motor skills [4]. How-
ever, most of the existing work is focused on the field of
computer graphics[5], particularly in character animation,
and often lacks consideration of real-world physical con-
straints. As a result, when these methods are transferred to
real robotic platforms, there is a significant gap between sim-
ulation and reality.

To address the challenges outlined above, this paper pro-
poses a skill reuse framework based on generative adver-
sarial imitation learning (GAIL) to tackle the challenge of
enabling robots. Through this approach, robots can extract
reusable skills that comply with their own physical limita-
tions from large-scale, unstructured motion data, without the
need for complex manual annotations or editing.

2 Problem Formulation

In the skill reuse framework based on GAIL, we formu-
late the robot motion control problem as a Markov Decision
Process (MDP). The robot interacts with the environment ac-
cording to a control policy π to optimize a given objective
function, thereby training an appropriate motion strategy.

At each time step t, the robot observes the system state st,
then samples and selects an action at from the control pol-
icy π. In this context, the state s represents the observation
space, which includes the position and velocity of each joint
of the robot. The action a corresponds to the action space,
which consists of the target positions for the proportional
derivative (PD) controllers of each joint. The PD controllers
compute the torque for each joint’s motor based on the spec-
ified PD gains. After executing the action, the environment
transitions the robot to the next state st+1 based on the state

transition function p, and a reward rt is received. The robot’s
goal is to maximize the expected cumulative reward R, i.e.,
to maximize the objective function J(π), as shown in (1).

J(π) = Ep(τ |π)

[
T−1∑
t=0

γtrt

]
(1)

where p(τ |π) = p(s0)
∏T−1

t=0 p(st+1|st, at)π(at|st) rep-
resents the likelihood of the trajectory distribution τ =
{s0, a0, r0, s1, . . . , sT−1, aT−1, rT−1, sT } under the control
policy π. p(s0) denotes the initial state distribution. T is the
maximum time step, indicating the time horizon of the tra-
jectory, and γ ∈ [0, 1] is the discount factor, used to balance
the weighting between immediate and future rewards.

3 Control Method

In this section, we describe the two main components of
the skill reuse framework based on GAIL: motion retargeting
and control strategy.

3.1 Motion Retargeting
Motion retargeting refers to the process of mapping a hu-

man motion dataset onto another human model. The hu-
man motion data used in this paper comes from two main
sources: one is motion data collected through motion cap-
ture suits, and the other is from open-source character ani-
mation datasets available on the internet. Due to the differ-
ence in the number of joints between human motion data and
those of a robot, it is necessary to retarget the human motion
data to the data of the robot’s skeletal architecture. The fun-
damental principle of motion retargeting involves matching
the skeletal structures between the source and target models.
Subsequently, optimization techniques are employed to map
the motion data from the source model onto the target model.

3.2 Control Strategy
The skill reuse framework based on GAIL consists of two

parts: low-level skill training and high-level task training.
The low-level skill strategy focuses on teaching the robot
various atomic motion skills and movement styles through
imitation learning. This strategy does not involve the imple-
mentation of specific task objectives. In contrast, the high-
level task policy uses reinforcement learning to design the
specific task as a reward function, invoking actions from the
low-level skill policy based on the task goals, thereby effi-
ciently completing the predetermined task.

By combining the goal of motion imitation and the un-
supervised skill discovery objective, the low-level skill pol-
icy encourages the development of a unique set of skill fea-



tures that generate behaviors with a style similar to that of
the given dataset. The reward function at each time step for
the low-level skill policy is shown in (2). This reward func-
tion consists of two parts: the first part is based on the GAN
objective, which primarily encourages the policy to gener-
ate motion styles similar to those in the dataset; the second
part is the objective for skill discovery, which encourages the
low-level skill policy to produce different behaviors for dif-
ferent latent variables z, ensuring that the skills are reusable.

rt = − log (1−D(st, st+1)) + β log q(zt | st, st+1) (2)

where D(st, st+1) denotes the output of the discrimina-
tor network, indicating the robot’s movement quality. and
q(z|s, s′) is the encoder, β is the weight for the encoder term.
The goal of skill discovery is to ensure that each latent vari-
able z produces different actions, so that the encoder can
recover the specific z responsible for generating a particular
action.

The high-level task policy w(z|s, g) is trained based on
the low-level skill policy, conditioned on a specific task goal
g. It outputs the latent variable z to leverage the low-level
policy’s actions to complete the task.

The reward function for the high-level task policy is for-
mulated by combining the task reward function with the
movement style reward function from the discriminator, as
shown in (3). This combined reward structure effectively
guides the high-level task policy to generate smooth and nat-
ural movements, thereby enhancing the overall performance
and adaptability of the robotic system across various tasks.

rt = wGr
G(st, at, st+1, g)−wS log (1−D(st, st+1)) (3)

In this formulation(3), wG and wS are manually speci-
fied weight coefficients, rG(s, a, s′, g) represents the task
reward function, The discriminator D(s, s′) from the low-
level skill policy as an evaluator of the robot’s movement
quality, encouraging the high-level task policy to produce
latent variable sequences Z that exhibit minimal variation
between consecutive time steps. This approach ensures that
the robot’s actions remain continuous during task execution.

The control strategy is analogous to the human nervous
system, where the high-level task policy functions like the
brain, responsible for task planning and scheduling, while
the low-level skill policy resembles the cerebellum, respon-
sible for executing specific actions. Through this approach,
the robot can more efficiently learn and imitate human mo-
tion skills and movement styles, enabling it to autonomously
select appropriate actions and successfully complete tasks
when facing complex situations.

4 Results

To evaluate the effectiveness of the GAIL framework in
acquiring human motion skills from extensive unstructured
human motion data and executing tasks with human-like mo-
tion styles, we conducted tests on robot fall recovery from
arbitrary states. In the fall recovery test, the robot starts
by free-falling from a height of 10 meters, and we observe
whether it can stand up with human-like motion styles.

The experimental results demonstrate that the robot is able
to leverage its acquired motion skills to adapt to environmen-
tal changes in real-time and perform complex goal-oriented

movements. It is worth noting that the dataset used as a ref-
erence does not include instances of the robot falling from
a high place and recovering to a standing posture. Instead,
the robot autonomously learns human-like motion styles and
realizes seamless transitions between different states. This
indicates that the robot is not only capable of effectively im-
itating human motion skills but can also autonomously exe-
cute advanced tasks, demonstrating a high degree of adapt-
ability and flexibility.

5 Conclusion

This paper constructs a skill reuse framework based on
GAIL, providing an efficient and flexible solution for imi-
tating human motion skills and styles. The framework is a
highly scalable data derived method that enables the learn-
ing of reusable motion skills from large-scale unstructured
human motion data. The framework does not require com-
plex manual annotation or data clipping. However, the cur-
rent methods still face challenges such as mode collapse and
insufficient policy robustness, which limit their application
in more diverse and dynamic real-world scenarios.

Future research will focus on the following directions:
further optimizing the policy learning paradigm to allevi-
ate mode collapse, improving the diversity and stability of
learned policies; and integrating multimodal data fusion with
advanced control theory to advance the framework’s applica-
tion in both theoretical research and engineering practice.
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